Classical-by-Need (A Classy Call-by-Need)

Pierre-Marie Pédrot & Alexis Saurin

7th April 2016

ESOP 2016

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 1 / 30

3

590

イロト イロト イヨト イヨト

The Two Faces of Computation on Demand

 $\Delta = \lambda x.(x)x, \quad \Omega = (\Delta)\Delta, \quad I = \lambda y.y$

Unnecessary computations in call-by-value:

$$M = (\lambda x.I)\Omega \to_{CBN} I$$

$$M = (\lambda x.I)\Omega \to_{CBV} M \to_{CBV} M \to_{CBV} \dots$$

Duplication of computations in call-by-name: $N = (\Delta)(I)I \rightarrow_{CBN} (I)I(I)I \rightarrow_{CBN} (I)(I)I \rightarrow_{CBN} (I)I \rightarrow_{CBN} I$ $N = (\Delta)(I)I \rightarrow_{CBV} (\Delta)I \rightarrow_{CBN} (I)I \rightarrow_{CBN} I$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The Two Faces of Computation on Demand

 $\Delta = \lambda x.(x)x, \quad \Omega = (\Delta)\Delta, \quad I = \lambda y.y$

Unnecessary computations in call-by-value:

$$M = (\lambda x.I)\Omega \to_{CBN} I$$

$$M = (\lambda x.I)\Omega \to_{CBV} M \to_{CBV} M \to_{CBV} \dots$$

Duplication of computations in call-by-name: $N = (\Delta)(I)I \rightarrow_{CBN} (I)I(I)I \rightarrow_{CBN} (I)(I)I \rightarrow_{CBN} (I)I \rightarrow_{CBN} I$ $N = (\Delta)(I)I \rightarrow_{CBV} (\Delta)I \rightarrow_{CBN} (I)I \rightarrow_{CBN} I$

Ideally, one would like to have one's cake and eat it too: to postpone evaluating an expression (...) until it is clear that its value is really needed, but also to avoid repeated evaluation.

(John Reynolds)

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 2 / 30

Call-by-need λ -calculus

Ariola-Felleisen, JFP 97

	Synt	ax	
terms	t	::=	$x \mid \lambda x.t \mid (t)t$
values	V	::=	$\lambda x.t$
answers	Α	::=	$V \mid (\lambda x.A) t$
evaluation contexts	E	::=	$\Box \mid Et \mid (\lambda x.E) t$
			$ (\lambda x. E[x]) E$
	educ	tions	(
$(deref)$ $(\lambda x. E[x]) V$			$(\lambda x. E[V]) V$
$(lift)$ $((\lambda x.A) t)u$		\rightarrow	$(\lambda x.Au) t$
$(assoc)$ $(\lambda x. E[x]) (\lambda y)$	v.A) t	\rightarrow	$(\lambda y. (\lambda x. E[x]) A) t$

Other calculi:

Maraist et al, JFP 98: same standard reduction Ariola, Herbelin & S., TLCA 11: in $\overline{\lambda}\mu\mu$ Chang & Felleisen, ESOP 12: single axiom call-by-need Accattoli et al., ICFP 14: explicit substitution call-by-need

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

Classical By-need

- Call-by-need is somehow an effect
- Not distinguishable from by-name in a pure setting...

500

< □ > < □ > < □ > < □ > < □ >

Classical By-need

- Call-by-need is somehow an effect
- Not distinguishable from by-name in a pure setting...

- But difference observable in presence of other effects!
- Several possible interactions
- In particular with first-class continuations

.

Classical By-need Calculi?

- Previous work: Ariola, Herbelin and S. formulated call-by-need strategies in $\overline{\lambda}\mu\tilde{\mu}$.
- In such a setting: control built-in and by-need wrought out

Sac

* 伊 ト * ヨ ト * ヨ ト

Classical By-need Calculi?

- Previous work: Ariola, Herbelin and S. formulated call-by-need strategies in $\overline{\lambda}\mu\tilde{\mu}$.
- In such a setting: control built-in and by-need wrought out

- We provide a more canonical presentation of call-by-need
- Inspired by this one weird trick from Linear Logic
- Naturally provides a classical by-need calculus (actually several)

Organization of the Talk

- Linear Head Reduction
- Classical Linear Head Reduction
- From LHR to Call-by-need
- Classical By-need

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 6 / 30

프 > 프

-

Linear Head Reduction

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

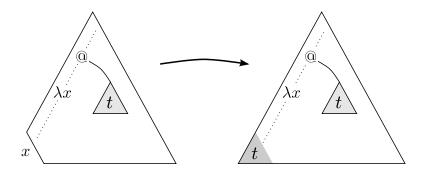
7th April 2016 7 / 30

Э

Sac

Linear head reduction, informally

(Danos & Regnier, ≈ 1990)



Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

990 1 7th April 2016 8 / 30

-

Э

Comparison between LHR and call-by-need

Striking similarities

- Both can be viewed as optimization of standard evaluation strategies;
- Both rely on a linear, rather than destructive, substitution;
- A variable is substituted only if it is necessary for pursuing the computation;
- Both share with call-by-name the same notion of convergence and the induced observational equivalences;
- Not easily presented as reduction relation.

Krivine Abstract Machine

	Closures	С	::=	(t, c)	(7
	Environments	σ	::=	0 0	$\sigma + (x := c)$
	Stacks	π	::=	$\varepsilon \mid c$	$c \cdot \pi$
	Processes	р	::=	$\langle c \mid$	$\pi angle$
Push	$\langle ((t) u, \sigma) \mid \pi$	\rangle		\rightarrow	$\langle (t,\sigma) \mid (u,\sigma) \cdot \pi \rangle$
Рор	$\langle (\lambda x.t, \sigma) \mid c$	$\cdot \pi angle$		\rightarrow	$\langle (t, \boldsymbol{\sigma} + (x := c)) \mid \boldsymbol{\pi} \rangle$
Grab	$\langle (x, \sigma + (x)) \rangle$	c))	$ \pi angle$	\rightarrow	$\langle c \mid \pi \rangle$
GARBAGE	$\langle (x, \sigma + (y)) \rangle$	c))	$ \pi angle$	\rightarrow	$\langle (x, \sigma) \mid \pi \rangle$

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 10 / 30

Krivine Abstract Machine

	Closures	С	::=	(t, c)	5)
	Environments	σ	::=	Ø 0	$\sigma + (x := c)$
	Stacks	π	::=	$\varepsilon \mid c$	$r \cdot \pi$
	Processes	p	::=	$\langle c \mid$	$\pi angle$
Push	$\langle ((t)u,\sigma) \mid \pi$	\rangle		\rightarrow	$\langle (t,\sigma) \mid (u,\sigma) \cdot \pi \rangle$
Рор	$\langle (\lambda x.t, \sigma) \mid c$	$\cdot \pi \rangle$		\rightarrow	$\langle (t, \boldsymbol{\sigma} + (x := c)) \mid \boldsymbol{\pi} \rangle$
Grab	$\langle (x, \sigma + (x)) \rangle$	c))	$ \pi angle$	\rightarrow	$\langle c \mid \pi \rangle$
GARBAGE	$\langle (x, \sigma + (y)) \rangle$	(c))	$ \pi angle$	\rightarrow	$\langle (x, \sigma) \mid \pi \rangle$

Is this really (weak) head reduction?

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 10 / 30

Ξ 9 Q (?

イロト イボト イヨト イヨト

Krivine Abstract Machine

Cl	osures	С	::=	(t, c)	(7
En	vironments	σ	::=	Ø 0	$\sigma + (x := c)$
St	acks	π	::=	$\varepsilon \mid c$	$c \cdot \pi$
Pr	ocesses	р	::=	$\langle c \mid$	$\pi angle$
Push	$\langle ((t) u, \sigma) \pi$	\rangle		\rightarrow	$\langle (t, \sigma) \mid (u, \sigma) \cdot \pi \rangle$
Рор	$\langle (\lambda x.t, \sigma) \mid c$	$\cdot \pi \rangle$		\rightarrow	$\langle (t, \boldsymbol{\sigma} + (x := c)) \mid \boldsymbol{\pi} \rangle$
Grab	$\langle (x, \sigma + (x)) \rangle$	(c))	$\pi angle$	\rightarrow	$\langle c \mid \pi \rangle$
GARBAGE	$\langle (x, \sigma + (y)) \rangle$	$c)) \mid$	$\pi angle$	\rightarrow	$\langle (x, \sigma) \mid \pi \rangle$

Is this really (weak) head reduction?

Simulating is not the same as implementing.

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 10 / 30

イロト イヨト イヨト

3

Sac

σ -equivalence

(Danos & Regnier, ≈ 1990)

$$\begin{array}{rcl} (\lambda x_1.t)u_1u_2 &=_{\sigma} & (\lambda x_1.(t)u_2)u_1 \\ (\lambda x_1.\lambda x_2.t)u &=_{\sigma} & \lambda x_2.(\lambda x_1.t)u \end{array}$$

- \rightsquigarrow Originated in the theory of linear logic proof nets: Inspired by the translation of λ -terms in proof-nets and the induced identification.
- $\rightsquigarrow\,$ A relation capturing the KAM behaviour.
- \rightsquigarrow Skips redexes ignored by the KAM.
- \rightsquigarrow Up to $\sigma\text{-equivalence, LHR}$ is the usual head reduction, made linear.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

LHR as a calculus

Insensitivity to σ -equivalence can be achieved by a context grammar:

Definition (λ_{lh}) closure contexts $\mathscr{C} ::= [\cdot] | (\mathscr{C}[\lambda x. \mathscr{C}])t$ left evaluation contexts $E ::= [\cdot] | (E)t | \lambda x. E$ $(\beta_{lh}) \quad (\mathscr{C}[\lambda x. E[x]])t \rightarrow \quad (\mathscr{C}[\lambda x. E[t]])t$ + congruence w.r.t E

Theorem

- β_{lh} is stable by σ -equivalence.
- λ_{lh} coincides with Danos-Regnier LHR.

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 12 / 30

Э

Sac

イロト イボト イヨト イヨト

Closure Contexts and the KAM

 Push and Pop transitions implement the computation of closure contexts

Proposition

Let \mathscr{C} be a closure context. There exists $[\mathscr{C}]_{\sigma}$ such that:

$$\langle (\mathscr{C}[t], \sigma) \mid \pi \rangle \longrightarrow^*_{\mathrm{PUSH}, \mathrm{POP}} \langle (t, \sigma + [\mathscr{C}]_{\sigma}) \mid \pi \rangle$$

Conversely, for all t_0 and σ_0 such that

$$\langle (t, \sigma) \mid \pi \rangle \longrightarrow^*_{\mathrm{PUSH, POP}} \langle (t_0, \sigma_0) \mid \pi \rangle$$

there exists \mathscr{C}_0 such that $t = \mathscr{C}_0[t_0]$.

$$\begin{split} & [\mathscr{C}]_{\sigma} \text{ defined by induction over } \mathscr{C} \text{ as follows:} \\ & [[\cdot]]_{\sigma} \equiv \emptyset \qquad [\mathscr{C}_{1}[\lambda x. \, \mathscr{C}_{2}] \, t]_{\sigma} \equiv [\mathscr{C}_{1}]_{\sigma} + (x := (t, \sigma)) + [\mathscr{C}_{2}]_{\sigma + [\mathscr{C}_{1}]_{\sigma} + (x := (t, \sigma))} \end{split}$$

Pierre-Marie Pédrot & Alexis Saurin

7th April 2016 13 / 30

<□▶ < □▶ < □▶ < 三▶ < 三▶ = 三 のへで

Classical LHR

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 14 / 30

Ξ

900

< □ > < □ > < □ > < □ > < □ >

$\lambda\mu$ -calculus variant of the LHR

Left stack contexts K:

$$K ::= [\cdot] \mid [\alpha] L[\mu\beta.K]$$

Classical extension of left contexts and closure contexts:

$$\overrightarrow{\mathcal{C}} ::= [\cdot] | \overrightarrow{\mathcal{C}}_1[\lambda x. \overrightarrow{\mathcal{C}}_2] t | \overrightarrow{\mathcal{C}}_1[\mu \alpha. K[[\alpha] \overrightarrow{\mathcal{C}}_2]] \overline{L} ::= [\cdot] | \lambda x. \overline{L} | \overline{L} t | \mu \beta. [\alpha] \overline{L}$$

Classical LHR:

The classical LHR is defined by the following reduction:

$$\overline{\mathscr{C}}[\lambda x.\overline{L}[x]] t \quad \rightarrow_{clh} \quad \overline{\mathscr{C}}[\lambda x.\overline{L}[t]] t$$

+ congruence w.r.t. \overline{L} .

Pierre-Marie Pédrot & Alexis Saurin

イロト イボト イヨト イヨト 二日

λ_{clh} is classical LHR

Definition (μ -KAM)

$$\sigma ::= \cdots | \sigma + (\alpha := \pi) \qquad \pi ::= \cdots | (\alpha, \sigma)$$

$$\langle (\mu \alpha.c, \sigma) | \pi \rangle \rightarrow_{Save} \langle (c, \sigma + (\alpha := \pi)) | \varepsilon \rangle$$

$$\langle ([\alpha]t, \sigma) | \varepsilon \rangle \rightarrow_{Restore} \langle (t, \sigma) | \sigma(\alpha) \rangle$$

As expected, λ_{clh} simulates intensionally the μ KAM:

Theorem

Let $c_1 \rightarrow_{clh} c_2$ where $c_1 := [\alpha] \overline{L}_1[\overline{\mathscr{C}}[\lambda x. \overline{L}_2[x]] t]$, then the substitution sequence of process c_1 is either empty or of the form $t :: \ell$ where ℓ is the substitution sequence of process c_2 .

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ < 三 か Q (~ 7th April 2016 16 / 30

Towards Call-by-need

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 17 / 30

3

990

イロト イボト イヨト イヨト

From LHR to Call-by-need

In three easy steps!

- Weak LHR
- ② Value passing
- ③ Closure sharing

3

イロト イヨト イヨト

990

(Step 1) Weak LHR

We need to track λ -abstractions that pertain to a closure context.

```
Definition (Marked \lambda-calculus)
```

$$t, u ::= x \mid (t)u \mid \lambda x.t \mid \ell x.t$$

We only consider well-balanced terms.

Definition (Marked closure contexts)

 $\mathscr{C}::=[\cdot] \mid (\mathscr{C}_1[\ell x.\mathscr{C}_2])t$

 \rightsquigarrow Such contexts are a more structured version of explicit substitutions

$$(\mathscr{C}_1[\ell x. \mathscr{C}_2])t \cong \texttt{let } x := t \texttt{ in } \mathscr{C}_1[\mathscr{C}_2]$$

Pierre-Marie Pédrot & Alexis Saurin

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

(Step 1) Weak LHR

Definition (Weak LHR)

Weak left contexts $E^w ::= [\cdot] | (E^w) t | \ell x. E^w$

+ congruence w.r.t. E^w

This reduction is still stable by σ .

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 20 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

(Step 2) Call-by-"value" LHR

We restrict substitution to values-up-to closures:

 $W ::= \mathscr{C}[\lambda x.t]$

and adapt the contexts accordingly:

Value left contexts $E^{\nu} ::= [\cdot] \mid (E^{\nu})t \mid \ell x. E^{\nu} \mid (\mathscr{C}[\ell x. E_1^{\nu}[x]]) E_2^{\nu}$

The call-by-value weak LHR is then obtained straightforwardly:

Definition (By-value LHR)

+ congruence w.r.t. E^{v}

Still stable by σ .

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 21 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

By-value ?

- λ_{wlv} already implements a call-by-need strategy
- Not a reduction scheme from the literature, though.

There is a duplication of computation:

$$(\mathscr{C}'[\ell x. E^{\nu}[x]]) \mathscr{C}[V] \quad \rightarrow \quad \big(\mathscr{C}'[\ell x. E^{\nu}[\mathscr{C}[V]]] \big) \mathscr{C}[V]$$

 ${\mathscr C}$ is copied, which will end up in recomputing its bound terms if ever they are going to be used throughout the reduction.

イロト イボト イヨト 一日

(Step 3) Closure sharing

Solve this similarly to the Assoc rule in Ariola-Felleisen's calculus:

Definition (By-value LHR with sharing) $(\beta_{wls}) \qquad \mathcal{C}[\lambda x.t] u \qquad \rightarrow \qquad \mathcal{C}[\ell x.t] u \\ \qquad \mathcal{C}'[\ell x.E^{v}[x]] \mathcal{C}[V] \qquad \rightarrow \qquad \mathcal{C}[\mathcal{C}'[\ell x.E^{v}[V]]V]$

+ congruence w.r.t. E^{v}

Theorem

 λ_{wls} is essentially Chang-Felleisen's calculus.

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 23 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

Classical By-need (At last!)

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 24 / 30

3

590

< □ > < □ > < □ > < □ > < □ >

Classical By Need

Following the same three steps...

$$\begin{aligned} & \mathcal{C} & ::= & [\cdot] \mid (\mathcal{C}_1[\ell x, \mathcal{C}_2])t \mid \mathcal{C}_1[\mu \alpha, K^{\nu}[[\alpha]\mathcal{C}_2]] \\ & E^{\nu} & ::= & [\cdot] \mid (E^{\nu})t \mid \ell x, E^{\nu} \mid (\mathcal{C}[\ell x, E_1^{\nu}[x]])E_2^{\nu} \mid \mu \alpha, K^{\nu}[[\alpha]E^{\nu}] \\ & K^{\nu} & ::= & [\cdot] \mid [\alpha]E^{\nu}[\mu\beta, K^{\nu}] \end{aligned}$$

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 25 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

A bit too powerful

- A very smart stack substitution!
- Thanks to closure contexts, never need to substitute stacks eagerly
- ... except when a $\mu \alpha.c$ term needed

This does not look like anything known from the literature, so we can't relate it to a previous calculus...

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 26 / 30

= nar

イロト イヨト イヨト

A Dumber Classical By Need

$$\begin{aligned} & \mathcal{C} & ::= & [\cdot] \mid (\mathcal{C}_1[\ell x, \mathcal{C}_2]) t \\ & E^{\nu} & ::= & [\cdot] \mid (E^{\nu}) t \mid \ell x, E^{\nu} \mid (\mathcal{C}[\ell x, E_1^{\nu}[x]]) E_2^{\nu} \\ & K^{\nu} & ::= & [\cdot] \mid [\alpha] E^{\nu}[\mu\beta, K^{\nu}] \end{aligned}$$

Definition (Classical-by-need with Intuitionistic Contexts) $\begin{array}{ccc} (\beta_{cls'}) & \mathscr{C}[\lambda x.t] u & \rightarrow & \mathscr{C}[\ell x.t] u \\ & \mathscr{C}'[\ell x.E^{v}[x]] \mathscr{C}[V] & \rightarrow & \mathscr{C}[\mathscr{C}'[\ell x.E^{v}[V]]V] \\ & & [\alpha]E^{v}[\mu\beta.K^{v}[[\beta]t] & \rightarrow & [\alpha]E^{v}[\mu\beta.K^{v}[[\alpha]E^{v}[t]] \end{array} \right.$ $+ \text{ congruence w.r.t. } K^{v}$

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 27 / 30

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Comparison with AHS classical call-by-need calculus

- Ariola, Herbelin and S. proposed a classical by-need λ -calculus derived from a call-by-need $\overline{\lambda}\mu\tilde{\mu}$ -calculus.
- In that calculus, β is implemented by plain β_{ν} -rule, a feature of sequent calculus.
- Correspondence with a modified version of this calculus, AHS', featuring a deref-rule à la Ariola-Felleisen:

Theorem

For any command c, there exists an infinite standard reduction in AHS'-calculus starting from c iff there exists an infinite reduction starting from c in the classical by-need calculus with Intuitionistic contexts.

イロト イボト イヨト イヨト 二日

Conclusion

- Reformulation of LHR;
- Extension to the $\lambda\mu$ -calculus / classical logic;
- Connection between LHR and call-by-need by deriving call-by-need from LHR. Surprisingly, this connection seemed to have remained unexploited (and unnoticed?) until our work and Accattolli et al work.

Lazy =	_	Demand-driven	+	Memoization	+	Sharing
		(weak LHR)		(by value)	(clc	osure shar.)

- Closure contexts are not new but we made explicit their central role for both LHR and call-by-need, which are essentially calculi with reductions up-to closure contexts.
- We defined a classical by-need calculus, again from LHR.

3

イロト イヨト イヨト

Thanks

Pierre-Marie Pédrot & Alexis Saurin

Classical-by-Need

7th April 2016 30 / 30

Ξ

990

< ロ ト < 団 ト < 三 ト < 三 ト</p>